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Abstract. We prove that an Artin group splits over infinite cyclic subgroups

if and only if its defining graph has a separating vertex, and explicitly construct

a JSJ decomposition over infinite cyclic subgroups for all Artin groups. This is
then used to show that, if two Artin groups are isomorphic, then they have the

same set of big chunks, that is, maximal subgraphs without separating vertices.

We also deduce acylindrical hyperbolicity for the automorphism groups of
many Artin groups, partially answering a question of Genevois in the case

of Artin groups.
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We’re not splitting atoms here;
we’re trying to entertain people.

Boomer Esiason

Introduction

Artin groups are a rich class of groups generalising braid groups, with strong
connections to Coxeter groups. They are defined via the following presentation:
given a finite simplicial graph Γ with vertices VpΓq, edges EpΓq, and for each edge
ta, bu P EpΓq a label mab P Zě2, the associated Artin group AΓ is presented by

xVpΓq | prodpa, b,mabq “ prodpb, a,mabq @ta, bu P EpΓqy,

where prodpu, v, nq denotes the prefix of length n of the infinite alternating word
uvuvuv . . . . Despite the explicit presentation, very few properties are known to
hold for all Artin groups: it is not even known if they are all torsion-free, or satisfy
the famous Kpπ, 1q-conjecture [Par14].

In this paper we investigate when an Artin group splits over Z, meaning that
it admits a graph of group decomposition with infinite cyclic edge groups. Such
splittings assumed a central role in the solution of the isomorphism problem for
hyperbolic groups (see [Sel95, Bow98, RS97, DG11] among many others); in partic-
ular, “maximal” splittings called JSJ decompositions were the key tool for under-
standing automorphisms of hyperbolic groups. In a similar fashion, we also obtain
results related to the isomorphism problem for Artin groups, and establish some
geometric properties of automorphism groups of Artin groups (see Theorem B and
Corollary E, respectively).

Cyclic splittings of Artin groups. Clay [Cla14] proved that a right-angled Artin
group (RAAG) on a connected graph Γ splits over Z if and only if either Γ contains
a separating vertex, or Γ has two vertices (since Z2 splits over Z). We generalise
this to all Artin groups:
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Theorem A (see Theorem 2.1). Let Γ be a finite, connected, labelled simplicial
graph. The Artin group AΓ splits over Z if and only if either Γ has a separating
vertex, or Γ has two vertices.

In other words, if an Artin group on at least three generators splits over Z, then
it must have a visual splitting, that is, a splitting coming from a decomposition
of the graph into two full proper subgraphs overlapping over a vertex. We also
have to include the case where Γ consists of a single edge; indeed, such an Artin
group (called a dihedral Artin group) splits over Z, as it is a central extension of
an infinite cyclic group by a virtually free group (see Example 3.3).

Our proof is similar in spirit to Clay’s. However, we had to implement some
upgrades, to circumvent those steps which used properties of RAAGs that are not
true for all Artin groups.

Isomorphism invariance of big chunks. One of the most widely open questions
for Artin groups is the isomorphism problem, which asks for an algorithm which
takes two labelled graphs Γ and Γ1 as input, and determines if they yield isomorphic
Artin groups. This question, which specialises Dehn’s Isomorphism Problem to the
family of Artin groups, is solved when one restricts to certain subclasses, including
RAAGs [Dro87], spherical-type [Par04], and large-type [Vas22], but there is no
unified approach. However, isomorphic Artin groups must admit the same splittings
over Z, as this is an algebraic property. In this spirit, if AΓ – AΓ1 , then one can
hope to use Theorem A to recover some decompositions of Γ and Γ1 into maximal
connected subgraphs without separating vertices, which we call big chunks. We
do just that in Theorem 5.6, of which we give a streamlined version here. For a
labelled graph Γ, let BCpΓq be the collection of its big chunks.

Theorem B (see Theorem 5.6). Let Γ and Γ1 be finite, connected, labelled simplicial
graphs, and let φ : AΓ Ñ AΓ1 be an isomorphism. Then there exists a bijection
φ# : BCpΓq Ñ BCpΓ1q, such that for every Λ P BCpΓq the following hold:

(1) AΛ – Aφ#pΛq.
(2) Aφ#pΛq is a conjugate of φpAΛq, possibly unless Λ is a leaf with label 2.
(3) If Λ is an even leaf, then so is φ#pΛq, with the same label.

In other words, isomorphic Artin groups must have isomorphic big chunks, and,
among these, the same number of even leaves of every given label. Theorem B
is already new for two-dimensional Artin groups, and we believe that our findings,
together with [Vas22, Theorem E], could be a key building block for a future solution
of the isomorphism problem in this class.

JSJ decompositions, trees of cylinders, and deformation spaces. The key
tool in the proof of Theorem B is the existence of a JSJ decomposition over cyclic
subgroups, in the sense of [GL17]. We refer to Definition 3.2 for the details; for our
purposes, it is enough to recall that, given a graph of group decomposition G of a
group G, with cyclic edge groups, if G-vertex groups are elliptic in every G-action
on a tree with cyclic edge stabilisers, then G is a JSJ decomposition. In other
words, a JSJ decomposition should be thought of as a “maximal” splitting of G,
which means that vertex groups cannot be further split “in a canonical way”. Our
methods allow us to build a JSJ decomposition over cyclic subgroups of an Artin
group AΓ, whose vertex groups roughly correspond to the big chunks of Γ:
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Theorem C (see Theorem 3.9). Let Γ be a finite, connected, labelled graph on at
least three vertices. There is an AΓ-tree JpΓq which is a JSJ-decomposition for AΓ

over virtually cyclic subgroups.

The construction of JpΓq is explicit, but we postpone it to Definition 3.7 and
only provide an example here (see Figure 1). Crucially, the proof of Theorem 3.9
uses that big chunks on at least three vertices do not split further over Z, as a
consequence of Theorem A.

Figure 1. The graph Γ and JSJ decomposition JpΓq from Exam-
ple D.

Example D. Consider a connected graph Γ as in Figure 1, whose big chunks are
Σ, Λ, and the three leaves, with labels 2, 3, and 6, respectively. The associated JSJ
decomposition JpΓq of AΓ is also depicted in the Figure. White vertices correspond
to separating vertices of Γ, while black vertices roughly correspond to big chunks.
The only exception are even leaves: a leaf with label 2 (here, spanned by b and
v) further splits as a HNN extension, while an even leaf with higher label (here,
generated by f and g) splits as an amalgamation Z2 ˚Z Z over its centre (here,
generated by pfgq3, as the label is 6). Whenever an edge of JpΓq is not labelled
in this picture, the edge group is the white vertex group, whose embedding in the
black vertex group corresponds to the graph inclusion of a separating vertex inside
a big chunk.

Our JSJ decomposition is not unique, as different Artin generating sets of the same
Artin group may yield non-isomorphic JSJ decompositions. There is a procedure,
due to Guirardel and Levitt, to obtain a canonical tree, called the tree of cylinders,
from the JSJ tree. This tree is left invariant by the automorphism group, and
the action turns out to be acylindrical, allowing us to affirmatively answer [Gen19,
Question 1.1] for any Artin group whose defining graph contains a separating vertex.
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Corollary E (see Corollary 4.6). Let AΓ be a torsion-free Artin group, such that Γ
is connected and has a separating vertex which does not centralise the whole group.
Then AutpAΓq is acylindrically hyperbolic.

We remark that the assumption that AΓ is torsion-free is conjecturally trivial,
since all Artin groups are expected to be torsion-free. By work of Fournier-Facio
and Wade, Corollary E implies that an Artin group AΓ as in the statement has an
infinite-dimensional space of AutpAΓq-invariant quasimorphism (see [FFW23, The-
orem E]). In turn, this has applications to construct unbounded AutpAΓq-invariant
word norms on AΓ (see [FFW23, Corollary C]).

The cost of the tree of cylinders is that the edge groups are no longer cyclic. If
one wishes to consider cyclic splittings, the canonical object is the JSJ deformation
space. Deformation spaces were first introduced by Forester [For01], motivated by
outer space for free groups [CV86]. Any JSJ decomposition of a group G gives
rise to the JSJ space [GL17], a contractible space with an action of the (outer)
automorphism group of G. As such, the JSJ deformation space turns out to be
a powerful tool to study (outer) automorphism groups; indeed, in [JMS25], we
combine the results of this paper with the theory of deformation spaces to tackle a
version of the isomorphism problem for new classes of Artin groups. More precisely,
we are able to reduce the so-called Strong Twist Conjecture for an Artin group to
its big chunks.

The first author recently defined another deformation space for certain large-
type Artin groups [Jon24]. We note that, in general, their space does not coincide
with the JSJ space of this article.

Future directions. In [GH17], Groves and Hull generalised Clay’s results and
proved that a RAAG on a connected graph Γ splits over an Abelian subgroup if
and only if Γ contains a separating simplex, or is itself complete, to account for Zn.
It is possible that similar techniques may lead to an analogous characterisation of
when an Artin group splits over a spherical Artin subgroup. Notably, the analogue
of Theorem B would yield the isomorphism invariance of chunk parabolics, where
a chunk is a maximal subgraph without separating cliques of spherical type. This
would be relevant since the first author proved that, if the chunks of a large-type
Artin group AΓ are isomorphism invariants and have finite outer automorphism
group, then OutpAΓq is of type VF, hence finitely presented [Jon24, Theorem 1.1].

The first step in the above direction would be to understand the following:

Question F. Let Γ be a finite, connected, labelled graph, and let DAn be a dihedral
Artin group with label n. What are necessary and sufficient conditions for AΓ to
split over DAn?

The matter is complicated by the existence of “exotic” maximal dihedral sub-
groups which are not parabolic (see e.g. [Vas22, Theorem D]). Some of these ques-
tions will also be considered in independent work of Sliazkaite.

Organisation of the paper. In Section 1 we recall some properties of simplicial
actions on trees. Section 2 is devoted to the characterisation of when an Artin
group splits over Z, Theorem A.

In Section 3 we produce a JSJ decomposition, thus proving Theorem C (see
Definition 3.7 for the construction of the splitting, and Theorem 3.9 for the proof
that it yields a JSJ decomposition). Then in Section 4 we combine the JSJ with
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the machinery of [GL11] to prove Corollary E on acylindrical hyperbolicity of au-
tomorphism groups of certain Artin groups (see Corollary 4.6).

Finally, the JSJ plays a central role in Section 5, where we prove that big chunks
are isomorphism invariant, Theorem B (see Theorem 5.6).

Acknowledgements. We thank Yassine Guerch and Gilbert Levitt for suggesting
the application to acylindrical hyperbolicity of automorphism groups; we are also
grateful to Kaitlin Ragosta and Ruta Sliazkaite for insightful discussions. A special
thanks goes to our supervisors Laura Ciobanu, Alessandro Sisto, and Alexandre
Martin for comments on a first draft of this document.

1. Background

We first recall some properties of simplicial actions on trees, referring to [Ser03] for
further generalities. We shall work in the following setting:

Notation 1.1. By tree we mean a simply connected simplicial graph, equipped
with the metric where each edge has length one. Given a group G, a G-tree pT,Ωq

is a tree T endowed with an action Ω: G Ñ AutpT q by simplicial isometries, without
edge inversions, and minimal (i.e. no proper sub-tree is invariant under the action).
We often suppress the reference to the action Ω when it is not relevant or it is clear
from the context.

Throughout we will write StabΩ pSq for the pointwise stabiliser of S Ď T , or
StabG pSq if there is no danger of confusing the action.

The translation length of an element g P G is defined as |g| – infxPT dT px, gxq.
The minset of g is the subtree spanned by all points x which realise the translation
length. If |g| “ 0 the element is called elliptic, and its minset is the sub-tree of all
fixed points of g. If otherwise |g| ą 0 the element is loxodromic, and its minset is a
geodesic line on which g acts by translations.

The following lemmas are straightforward:

Lemma 1.2 ([CV96, Lemma 6.11]). Suppose a group G acts on a tree T , and let
g and h be commuting elements. Then the minset of g is invariant under h.

Lemma 1.3 ([Cla14, Corollary 2.5]). If Z2 acts on a tree without a global fixed
point, then for any basis tg, hu, one of the elements must act loxodromically.

Recall also that a group G splits over a family Z of subgroups if G is isomorphic
to the fundamental group of a graph of groups whose edge groups are conjugates
of subgroups in Z. If this is the case, then G acts on the Bass-Serre tree of the
splitting, and edge stabilisers are conjugates of subgroups in Z. If moreover G does
not coincide with any vertex group (that is, if the splitting is non-trivial), then the
action has no global fixed point.

Conversely, if a group G acts without global fixed points on a tree T , then G
is isomorphic to the fundamental group of a (non-trivial) graph of groups, whose
edge groups are conjugates of edge stabilisers. With a little abuse of notation, we
often conflate a G-tree with the corresponding graph of groups decomposition.

2. Cyclic splittings of Artin groups

Given a finite, labelled simplicial graph Γ, let AΓ be the associated Artin group.
We fix once and for all an identification between Γ and a generating set of AΓ, and
we will always conflate a vertex of Γ with the corresponding group element.
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We recall here the notion of a parabolic subgroup. A subgraph Λ ď Γ is said to
be full, or the full subgraph of Γ induced by VpΛq, if every edge of Γ connecting two
vertices of Λ is also an edge of Λ. For every full subgraph Λ ď Γ we can consider
the subgroup xVpΛqyAΓ

of AΓ generated by VpΛq. Such a subgroup is called the
standard parabolic subgroup of AΓ generated by VpΛq and is denoted AVpΛq. Then
AVpΛq is isomorphic to AΛ, by a result of Van der Lek [VdL83, Theorem 4.13],
so henceforth we shall denote the standard parabolic subgroup on Λ by AΛ. A
parabolic subgroup of AΓ is a conjugate of a standard parabolic subgroup.

Recall that, if ta, bu is an edge labelled with some integer m ě 3, the dihedral
Artin group DAm – xa, b | prodpa, b,mq “ prodpb, a,mqy has infinite cyclic centre,
generated by

zab “

#

∆ab if m is even;

∆2
ab if m is odd,

where ∆ab “ prodpa, b,mq is the Garside element of the dihedral (see e.g. [BS72]).
We now move to the characterisation of when an Artin group splits over Z.

Throughout the paper we actually work in the general setting of splittings over
virtually cyclic subgroups. In fact every splitting we encounter is over Z, which
is unsurprising since Artin groups are conjecturally torsion-free while a virtually
cyclic group which is not Z must have finite-order elements (see [Mac96, Lemma
3.2]).

Recall that a vertex v of a simplicial graph Γ is separating if the subgraph
spanned by VpΓq ´ tvu is disconnected.

Theorem 2.1. Let Γ be a finite, connected, labelled simplicial graph. The Artin
group AΓ splits over virtually cyclic groups if and only if

‚ Γ has two vertices, or
‚ Γ has a separating vertex.

In both cases, AΓ splits over Z.

The “if” part of Theorem 2.1 is clear. Indeed, if Γ has at most two vertices, the
corresponding Artin group is isomorphic to either Z2 or a dihedral Artin group,
all of which split over Z (see Example 3.3 for explicit splittings of dihedral Artin
groups over Z). Moreover, if Γ has a separating vertex v, then there exist two proper
induced subgraphs Γ1 and Γ2 of Γ such that Γ1 X Γ2 “ tvu, while Γ1 Y Γ2 “ Γ;
therefore AΓ admits a visual splitting AΓ1 ˚xvy AΓ2 .

We shall devote the rest of the Section to the proof of the “only if” part, that
is, if Γ has at least three vertices and no separating vertices, then AΓ cannot split
over virtually cyclic groups. It is useful to keep in mind that, by Bass-Serre theory,
admitting no splitting over virtually cyclic groups is equivalent to the fact that,
whenever the group acts on a tree without global fixed points, there exists an edge
whose stabiliser is not virtually cyclic.

For the next lemma, recall that a Hamiltonian cycle in a graph is an embedded
cycle that visits each vertex exactly once.

Lemma 2.2. Let Γ be a finite simplicial graph admitting a Hamiltonian cycle.
Then AΓ does not split over virtually cyclic groups.

Proof. Let T be a tree on which AΓ acts without global fixed points, and we want
to find an edge whose stabiliser is not virtually cyclic. Let C be the Hamiltonian
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cycle, and let tv1, . . . , vn, vn`1 “ v1u be a cyclic ordering of its vertices. Whenever
mj – mvjvj`1 ě 3 let zj – zvjvj`1 . Let g1 “ v1, and inductively define

gi`1 “

$

’

&

’

%

vj`1 if gi “ vj and mj “ 2;

zj if gi “ vj and mj ě 3;

vj`1 if gi “ zj .

In other words, two consecutive gi and gi`1 are either the vertices of an edge of C
with label 2, or a vertex of an edge of C with label at least 3 and the generator of
the corresponding centre. See Figure 2 for an example.

Figure 2. Here Γ is the square on the left. Then we set g1 “ a,
g2 “ b, g3 “ zbc, and so on. This way, every two consecutive gi
generate a copy of Z2.

Now define Gi – xgi, gi`1y – Z2. By construction Gi´1 X Gi “ xgiy (this is a
consequence of [VdL83] if the subgroups are contained inside different dihedrals).
There are two cases to analyse.

Case I. Assume first that each Gi fixes a point. If some Gi fixes an edge we are
done; thus assume that each Gi fixes a unique point pi. If all the pi were the same,
then AΓ, which is generated by the Gis, would have a global fixed point. So let p
be a leaf of the subtree S spanned by the pi, and let I Ď t1, . . . , ru be such that
Gi fixes p if and only if i P I. Notice that I is non-empty, and does not contain
all indexes as there is no global fixed point; hence there exist j, k P I such that
j ´ 1, k ` 1 R P , where addition is modulo r. Let pj´1 (resp. pk`1) be the point
fixed by Gj´1 (resp. Gk`1). This way, gj P Gj´1 XGj fixes the non-trivial segment
rpj´1, ps, and similarly gk`1 P Gk X Gk`1 fixes rpk`1, ps. As p was a leaf of S,
the two segments share an edge, so xgj , gk`1y fixes an edge. Now, gi and gk`1 are
infinite order elements without a non-trivial common power, as they are either two
different vertices, or a vertex and the generator of a centre, or the generators of
the centres of two different dihedrals (in all three cases, the absence of a common
power follows immediately from [VdL83]). In particular xgj , gk`1y is not virtually
cyclic and fixes an edge, proving that AΓ does not split over virtually cyclic groups.

Case II. Assume now that some Gi has no fixed points, say G1 without loss of
generality. By Lemma 1.3, we can assume without loss of generality that g2 acts
loxodromically, so it acts by translations on some geodesic line A. By Lemma 1.2,
g1pAq “ A, so there exist integers k1, k2, with k1 ‰ 0, such that h “ gk1

1 gk2
2

fixes A pointwise. For the same reason, there exist integers l2, l3, with l3 ‰ 0,
such that h1 “ gl22 g

l3
3 fixes A pointwise. Notice that, since h P G1, h

1 P G2, and
G1XG2 “ xg2y, we get that h and h1 are infinite order elements without a non-trivial
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common power. Hence, as in Case I, the fact that xh, h1y fixes an edge concludes
the proof. □

Lemma 2.3. Let Γ be a finite, connected, labelled simplicial graph on at least three
vertices, and let L be a collection of induced subgraphs of Γ such that:

(1) For every Λ P L, AΛ does not split over virtually cyclic groups;
(2) Every two-edges segment of Γ belongs to some Λ P L.

Then AΓ does not split over virtually cyclic groups.

Proof. Suppose that AΓ acts on a tree T , without a global fixed point. If some AΛ

has no fixed point, then by (1) a non-virtually-cyclic subgroup of AΛ (and therefore
of AΓ) fixes an edge, and we are done. Thus assume that each AΛ fixes a point. In
particular, every vertex of Γ fixes a point (this is because Γ is connected and has at
least three vertices, so every vertex belongs to a two-edges segment). Furthermore,
every two-edges segment with vertices ta, b, cu fixes a vertex, which we can assume
to be unique as otherwise the non-virtually-cyclic subgroup xa, by would fix an edge.

Since there is no global fixed point, there exist vertices v, v1 of Γ which do not
share a fixed point. As argued above, v and v1 cannot belong to the same two-
edges segment, so they are at distance n ě 3 in Γ. Furthermore, if we take a
combinatorial path v “ v0, . . . , vn “ v1 from v to v1, there must be some index
0 ă i ă n ´ 1 such that xvi´1, vi, vi`1y and xvi, vi`1, vi`2y fix different points. In
particular, the dihedral xvi, vi`1y fixes an edge, so AΓ does not split over virtually
cyclic groups. □

The following concludes the proof of Theorem 2.1:

Lemma 2.4. Let Γ be a finite, connected, labelled simplicial graph on at least three
vertices, without separating vertices. Then AΓ does not split over virtually cyclic
groups.

Proof. Let L be the collection of induced subgraphs of Γ spanned by embedded
cycles. For every Λ P L, AΛ does not split over virtually cyclic groups by Lemma 2.2;
moreover, since Γ has at least three vertices and no separating vertex, every two-
edges segment belongs to an embedded cycle. Hence L satisfies the requirements
of Lemma 2.3, and the conclusion follows. □

We end the Section with two remarks, respectively completing the picture of which
Artin groups split over Z, and reminding the reader of when an Artin group splits
over finite subgroups.

Remark 2.5 (Disconnected graphs). If Γ is disconnected then AΓ splits over Z.
Indeed if Γ has at least three vertices then it admits a visual splitting over a
vertex; if instead Γ consists of two vertices then AΓ – F2, which splits over Z as
xa, b, t | tat´1 “ by – xa, ty.

Remark 2.6 (One-endedness). Recall that, by Stallings’ Theorem [Sta71], a group
has more than one end if and only if it does not split over finite subgroups. For an
Artin group AΓ, the latter happens if and only if Γ is either a point or disconnected.
Indeed, if Γ is disconnected then AΓ is the free product of the parabolic subgroups
on its connected components, while if Γ is a point then Z is a HNN extension of
the trivial group. Conversely, [BDM09, Proposition 1.3] states that an Artin group
on a connected graph on at least two vertices is not relatively hyperbolic, and in
particular it cannot split over finite subgroups.
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3. JSJ decomposition over virtually cyclic subgroups

This Section is devoted to the explicit construction of a JSJ decomposition over
virtually cyclic subgroups for a one-ended Artin group. Recall that we work in the
setting of Notation 1.1, so all group actions on trees are assumed to be minimal
and without inversions.

Definition 3.1 (V C-splitting). Let G be a group. A V C-splitting of G is a G-tree
pT,Ωq such that, for every edge e of T , StabΩ peq is virtually cyclic.

Definition 3.2 (JSJ tree, [GL17]). A V C-splitting pT,Ωq of a group G is a JSJ
tree over virtually cyclic subgroups if:

‚ T is universally elliptic, meaning that, for every edge e of T and every
V C-splitting pT 1,Ω1q, StabΩ peq acts elliptically on T 1;

‚ T dominates every universally elliptic tree, meaning that, if T 1 is any uni-
versally elliptic V C-splitting, there is a G-equivariant map T Ñ T 1; in other
words, vertex stabilisers for Ω act elliptically on T 1.

The associated graph of groups decomposition of G is called a JSJ decomposition
over virtually cyclic subgroups.

Example 3.3 (JSJ splittings of dihedral Artin groups). We first exhibit a JSJ
decomposition over virtually cyclic groups for a dihedral Artin group DAn. Let
pT,Ωq be a V C-tree for DAn. Notice that edge stabilisers in Ω cannot be trivial,
as dihedrals are one-ended by Remark 2.6; moreover, they must be infinite cyclic,
since dihedrals are torsion-free (this follows from e.g. [CMV23, Theorem D]).

First, let n be odd. Consider the splitting pTn,Ωnq as an amalgamated product
induced by the isomorphism DAn – xx, y | x2 “ yny, where y “ ab and x “ ab . . . a.
Let z “ x2, and suppose by contradiction that z acts loxodromically on T . Since
z generates the centre, every element in DAn commutes with z, so it must fix the
axis of z by Lemma 1.2. In particular, by minimality of the action, the whole T
coincides with the axis of z. Let g generate the stabiliser of an edge of T , and notice
that, since the action is without inversions, g fixes the whole line pointwise. Then
DAn would be isomorphic to a semidirect product xgy ¸ xzy – Z2, and this is not
the case. We thus proved that z must act elliptically on T , and in turn so do x and
y as they are roots of an elliptic element. This shows that pTn,Ωnq is a JSJ tree
over cyclic groups, as its vertex stabilisers are generated by conjugates of x and y.

Now let n “ 2m form ě 2, and let pTn,Ωnq be the splitting as an HNN extension
induced by the isomorphism DAn – xx, y | xymx´1 “ ymy, where y “ ab and
x “ a. Let z “ ym, which generates the centre. By the above argument z must act
elliptically on T , and in turn so does its root y, which generates the vertex group.
Then again pTn,Ωnq is a JSJ tree over cyclic groups.

Finally, there is no JSJ decomposition over cyclic subgroups of Z2. Indeed, given
any primitive element a P Z2, complete it to a basis ta, bu and consider the splitting
as an HNN extension Z2 – xa, b | bab´1 “ ay where the vertex group is xay. This
means that, if there were a JSJ decomposition over cyclic subgroups, then its edge
stabilisers would be contained in every cyclic subgroup, so they would be trivial;
this would contradict that Z2 is one-ended.

Notation 3.4. For the rest of this Section let Γ be a finite, connected, labelled
simplicial graph on at least three vertices, so that AΓ does not split over finite
subgroups by Remark 2.6.
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Definition 3.5. A big chunk is a connected induced subgraph of Γ without sepa-
rating vertices, which is maximal (with respect to inclusion) with these properties.
A big big chunk is a big chunk on at least three vertices. A (big) big chunk parabolic
is a subgroup of AΓ conjugated to some AΛ, where Λ is a (big) big chunk.

Notice that two big chunks can only overlap over a vertex, which must separate Γ;
conversely, every separating vertex belongs to at least two big chunks.

Remark 3.6 (Big chunk parabolics are retracts). Let Λ be a big chunk of Γ. For
every vertex v P Γ define ρpvq P Λ to be the closest vertex in Γ to v; such vertex is
unique, because Λ is a big chunk. Then mapping every generator v to ρpvq gives a
homomorphism ρ : AΓ Ñ AΛ which is the identity on AΛ.

Definition 3.7 (JpΓq). Consider the bipartite graph BpΓq defined as follows:

‚ BpΓq has one black vertex for every big chunk, and one white vertex for
every separating vertex of Γ. We denote black vertices by the corresponding
big chunks, and white vertices by the corresponding vertices of Γ.

‚ If v is a white vertex and Λ is a black vertex, there is an edge tv,Λu if and
only if v P Λ.

Next, recall that a leaf of Γ is an edge one of whose endpoints, called the tip of the
leaf, has valence one. A leaf is even or odd according to the parity of its label; an
even leaf is toral if the label is 2, and is braided otherwise. Now let B1pΓq be the
graph obtained from BpΓq as follows:

‚ glue a one-edge loop to each black vertex corresponding to a toral leaf;
‚ for every braided even leaf Λ, add a red vertex which is only adjacent to Λ.

We are finally ready to describe the candidate JSJ decomposition JpΓq. The base
graph of JpΓq is B1pΓq. Vertex and edge groups are as follows:

‚ If v is a white vertex, the associated vertex group is xvy.
‚ If Λ is a black vertex which is not an even leaf, the corresponding vertex
group is AΛ.

‚ Let xa, by be a black vertex corresponding to a toral leaf with tip b. The
associated vertex group is xay, and the stable letter of the loop is b, which
commutes with a.

‚ Let xa, by be a black vertex corresponding to an even leaf with label 2m ě 4
and tip b, and let z “ zab. The black vertex group is xa, zy – Z2; the red
vertex group is generated by r “ ab; and the edge between them identifies
rm with z. To understand the construction, one should recall that

xa, b | pabqm “ pbaqmy – xa, z, r | ra, zs “ 1, rm “ zy – Z2 ˚Z Z.
‚ Whenever tv,Λu is an edge of BpΓq, the associated edge group is xvy, and
inclusions are given by subgraph containments.

The whole construction is clarified with an example in Figure 3.

Remark 3.8 (Minimality of JpΓq). By construction, whenever e is a leaf of JpΓq

and w is its tip, the edge group H associated to e properly embeds in the vertex
group V for w. This is because, if w is black then V is a big chunk parabolic, which
is not cyclic; otherwise w is red, V “ xry for some element r, and the edge group is
generated by a proper power of r. By [Bas93, Lemma 7.12], this condition, together
with the fact that the decomposition is finite, implies that AΓ acts minimally on
the Bass-Serre tree of JpΓq, so we are in the setting of Notation 1.1.
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Figure 3. Example of the construction of the JSJ decomposition
over virtually cyclic groups. First, one identifies the big chunks of
Γ, which correspond to the black vertices of BpΓq. In this example,
there are two even leaves, the toral leaf ta, bu and the braided leaf
ta, du, with edge label 6. Therefore, in B1pΓq we glue a loop to
ta, bu and a free edge to ta, du. Next, every white vertex is labelled
with the subgroup generated by the corresponding vertex of Γ.
Every black vertex which is not an even leaf is labelled with the
corresponding parabolic subgroup, while even leaves are further de-
composed as HNN extensions (for toral leaves) or as amalgamated
free products of Z2 and Z (for braided leaves). Every edge of JpΓq

without a label represents the embedding of the white vertex group
into the black vertex group, induced by inclusion of subgraphs of Γ.

Theorem 3.9. Let Γ be a connected graph on at least three vertices. If T is a
V C-tree, every vertex group of JpΓq acts elliptically on T . As a consequence, JpΓq

is a JSJ-decomposition for AΓ over virtually cyclic subgroups.

Proof. We first record two facts which we shall use multiple times.

Claim 3.10. Let ta, b, cu Ď Γ be a two-edges segment, with a R LinkΓpcq. Then b
acts elliptically on T .

Proof of Claim 3.10. Let g be either a if mab “ 2, or zab if mab ě 3. Similarly,
define h as c if mbc “ 2, or zbc if mbc ě 3. If b were loxodromic then one could
find k1, k2, l1, l2 P Z, with k1, l1 ‰ 0, such that the non-virtually-cyclic subgroup
xgk1bk2 , hl1bl2y would fix an edge, as in the proof of Lemma 2.2. □

With the same techniques, one gets:

Claim 3.11. Let ta, bu be an edge of Γ, with mab ě 3. Then zab acts elliptically
on T .
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Proof of Claim 3.11. Again, if zab acted loxodromically, one could find k1, k2, l1, l2 P

Z, with k1, l1 ‰ 0, such that the non-virtually-cyclic subgroup xak1zk2

ab , b
l1zl2aby would

fix an edge. □

Going back to the proof, we want to show that every vertex group in JpΓq acts
elliptically on T . By construction, every white vertex group of JpΓq is a subgroup
of a black vertex group; moreover, if xa, by is a braided even leaf, the associated
red vertex group is generated by a root r of zab, and in particular if zab acts
elliptically on T then so does r. By this argument, we only need to consider black
vertex groups. Furthermore, big big chunk parabolics must act elliptically, since by
Lemma 2.4 they cannot split over virtually cyclic groups. So we are left to show
that the vertex group associated to a big chunk on two vertices ta, bu is elliptic.
There are two cases to analyse.

CASE I: ta, bu is not a leaf. In this setting both a and b are separating vertices, so
there exist two edges tv, au and tb, wu such that a separates v from b, and similarly
b separates w from a. By Claim 3.10, a and b both act elliptically on T . Then the
black vertex group associated to ta, bu, which is the dihedral xa, by, acts elliptically
by the following Claim:

Claim 3.12. Let ta, bu be an edge of Γ. If a and b both act elliptically on T , then
xa, by fixes a point.

Proof of Claim 3.12. If mab “ 2 then xa, by – Z2 must act elliptically, as otherwise
one of the generators should act loxodromically by Lemma 1.3. Then suppose that
mab ě 3, and let z “ zab. By Claim 3.11 z acts elliptically, so let T 1 be the minset
of z. Notice that both a and b act on T 1, by Lemma 1.2. Moreover, since both a and
z act elliptically, the whole subgroup xa, zy fixes a point of T , by the contrapositive
of Lemma 1.3; in other words, a (and symmetrically b) must fix a point in T 1.

Now, for every n P Z ´ t0u, the fixed subtree FixT 1 panq is a single point pa not
depending on n, because, if FixT 1 panq properly contained the non-trivial subtree
FixT 1 paq, then the non-virtually-cyclic subgroup xan, zaby would fix an edge. As a
consequence, FixT 1 paq coincides with the stable fixed point set

tpau “ Fix8
T 1 paq –

ď

nPN´t0u

FixT 1 panq.

A similar argument shows that Fix8
T 1 pbq “ FixT 1 pbq is a single point pb. Now

suppose that a and b do not fix a common vertex, and we claim that this leads to the
contradiction that a and b generate a free group. Indeed, let γ “ rpa, pbs Ă T 1, and
decompose T 1 “ XaYγYXb whereXaXγ “ tpau and similarlyXbXγ “ tpbu. Since
tpau “ Fix8

T 1 paq, we see that anpXbq Ă Xa for every n P Z´ t0u, and symmetrically
with a and b swapped. Then the ping-pong lemma (see e.g. [Man17]) shows that
xa, by is non-abelian free, a contradiction. □

CASE II: ta, bu is a leaf. Let b be the tip of the leaf. Since Γ has at least three
vertices and is connected, there exists c P LinkΓpaq ´ tbu. Applying Claim 3.10 to
the two-edges segment tb, a, cu shows that a acts elliptically on T . There are now
three cases to analyse, depending on mab.

‚ If mab “ 2, the black vertex group associated to the leaf is xay, and there
is nothing else to prove.
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‚ If mab ą 2 is even then zab acts elliptically by Claim 3.11; thus the black
vertex group associated to the leaf, which is xa, zaby – Z2, acts elliptically
by Lemma 1.3.

‚ If mab ą 2 is odd then b acts elliptically as well, since it is conjugated to a;
hence the black vertex group associated to the leaf, which is xa, by, fixes a
point by Claim 3.12.

The proof of Theorem 3.9 is now complete. □

4. Acylindrical hyperbolicity of automorphism groups

In this Section we prove that the automorphism group of an Artin group AΓ is
acylindrically hyperbolic, provided the existence of a separating vertex of Γ which
is not central in AΓ. To do so, from the JSJ decomposition from Section 3 we
shall build an AutpAΓq-invariant tree, which is an instance of the so-called tree of
cylinders from [GL11].

4.1. Background on acylindrical hyperbolicity. The notion of acylindricity is
due to Sela, who originally formulated it for actions on trees, and was then extended
by Bowditch to action on general metric spaces [Sel97, Bow08].

Definition 4.1 (Acylindricity). Let G be a group and let pX,dq be a metric space.
An action of G on pX,dq by isometries is acylindrical if, for every ε P Rě0 there
exist L P Rě0 and N P N such that, for every x, y P X, if dpx, yq ě L, then

|tg P G : dpx, gxq ă ε and dpy, gyq ă εu| ď N.

In the case where pX,dq is a simplicial tree endowed with the standard metric
(i.e. edges are assigned unit length), this definition is equivalent to Sela’s original
one [Bow08, Section 2]: there exist L,N P N such that, for every u, v P VpXq, if
dpu, vq ě L, then StabG puq X StabG pvq has order bounded by N . In other words,
an action on a tree X is acylindrical if geodesic segments of length at least L are
fixed by at most N elements.

Recall that a geodesic metric space X is hyperbolic if there exists δ ě 0 such
that, for every geodesic triangle in X, each side is contained in the δ-neighbourhood
of the union of the other two.

Definition 4.2 ([Osi16]). A group is acylindrically hyperbolic if it is not virtu-
ally cyclic and it admits an acylindrical action on a hyperbolic metric space with
unbounded orbits.

4.2. Trees of cylinders. We now recall the construction of the tree of cylinders
from [GL11]. For experts, we shall specialise the general definition to the case
of virtually cyclic subgroups, with commensurability as the so-called admissible
relation.

Definition 4.3 (Cylinder). Let pT,Ωq be a V C-tree for a group G. Given an
edge e of T , its cylinder Ce is the subforest of all edges e1 such that StabΩ peq and
StabΩ pe1q are commensurable (i.e. their intersection has finite-index in both).

By [GL11, Lemma 4.2], a cylinder is actually a subtree, so two cylinders can
overlap on at most a vertex.

Definition 4.4 (Tree of cylinders). The tree of cylinders of pT,Ωq is the bipartite
tree Tc with vertex set VpTcq “ V0 \ V1 defined as follows:
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‚ V0 is the set of vertices x of T belonging to at least two distinct cylinders;
‚ V1 is the set of cylinders of T ;
‚ there is an edge e “ tx,Cu between x P V0 and C P V1 if and only if x
(viewed as a vertex of T ) belongs to C (viewed as a subtree of T ).

As G acts on the set of cylinders, there is a natural isometric G-action on Tc which
we denote by Ωc. It is clear from the construction that StabΩc

pxq “ StabΩ pxq

for every x P V0; moreover, for every edge e of T we have that StabΩc
pCeq is the

commensurator of StabΩ peq in G, i.e. the set of all g P G such that StabΩ peq and
g StabΩ peq g´1 are commensurable.

It is easy to see that Tc is indeed a tree [Gui04]; moreover, by [Gui04, Lemma
4.9], Ωc is minimal if Ω is minimal.

The following proposition is known to experts and included for completeness.
The proof is largely based on personal communications with Yassine Guerch and
Gilbert Levitt, which we both thank.

Proposition 4.5 (see [GL11]). Let G be a group whose torsion subgroups have uni-
formly bounded cardinality. Let pT,Ωq be a JSJ-tree over virtually cyclic subgroups
of G which is not a point. Then G acts minimally and acylindrically on Tc, and
the action extends to an isometric action of AutpGq.

Proof. We already noticed that the G-action is minimal, and it extends to AutpGq

by [GL11, Corollary 4.10], so we are left to prove acylindricity. Let p, q P V pTcq be at
distance at least 6, and we claim that StabΩc

ppqXStabΩc
pqq has uniformly bounded

cardinality. Since the tree is bipartite, we can find p1, q1 P V0 which lie on a geodesic
rp, qs and are at distance at least 4. Since any element fixing p and q must also fix
p and q1, it is enough to bound the cardinality of StabΩc

pp1q X StabΩc
pq1q. Since

p1, q1 P V0, the latter equals H – StabΩ pp1qXStabΩ pq1q, which is therefore virtually
cyclic as it is contained inside the stabiliser of some edge of T . If H is finite then we
are done, as torsion subgroups of G have uniformly bounded cardinality. Otherwise
H is commensurable to all edge stabilisers on a T -geodesic between p1 and q1, which
therefore belong to the same cylinder, violating the fact that dTc

pp1, q1q ě 4. □

4.3. Application to automorphism groups of Artin groups.

Corollary 4.6. Let AΓ be a torsion-free Artin group such that Γ is connected and
has a separating vertex s which does not centralise the whole group. Then AutpAΓq

is acylindrically hyperbolic.

Proof. By hypothesis, there is a vertex t P Γ which generates either a non-abelian
dihedral or a free group with s. It is easy to see that t does not commensurate
xsy, so xsy is weakly malnormal, meaning that it has finite (in this case, trivial)
intersection with one of its conjugates. Then, since AΓ splits as an amalgamated
product over xsy, it is acylindrically hyperbolic by [MO15, Corollary 2.2]. In turn,
since it is also torsion-free, [Bog22, Corollary E] provides an element w such that, if
an endomorphism φ : AΓ Ñ AΓ fixes w, then φ is the conjugation by a power of w.

Now let pT,Ωq be the Bass-Serre tree of the JSJ splitting JpΓq from Definition 3.7,
which is not a point since Γ is not a single big chunk. By Proposition 4.5, AΓ has a
minimal, acylindrical action on the tree of cylinders Tc which extends to AutpAΓq.
We take a small detour to prove the following:

Claim 4.7. The element w acts loxodromically on Tc, which is therefore unbounded.
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Proof of Claim 4.7. Towards a contradiction, suppose that w fixes some vertex of
Tc. If it fixes some x P V0 then w P StabΩ pxq, which is a vertex group of T and is
therefore contained in a big chunk parabolic H. However, by Remark 3.6 there is
a retraction ρ : AΓ Ñ H, which is absurd as ρ fixes w and is not a conjugation.

Now assume that w fixes the cylinder Ce, for some edge e of T . We want to show
that w acts elliptically on T , from which we shall deduce a contradiction with the
exact same argument as above.

Suppose first that e connects a black and a red vertex, so that StabΩ peq “

gxzabyg´1 for some braided even leaf ta, bu and some g P AΓ. Up to replacing w
by gwg´1, which has the same characterisation as w in terms of endomorphisms,
we can assume that g “ 1. Since w commensurates StabΩ peq, there are non-trivial
integers m,n P Z ´ t0u such that wzmabw

´1 “ znab. By looking at the retraction
ρ : AΓ Ñ xa, by, where zab is central, we see that m “ n, so w and znab commute.
But then the conjugation ψ by znab fixes w, so ψ must coincide with the conjugation
by a power of w. Hence it must be that w is a root of znab, since a torsion-free
acylindrically hyperbolic group is centerless [Osi16, Corollary 7.2]. This means
that w acts elliptically on T as one of its powers does, as required.

We are left to consider the case where e is an edge whose stabiliser is conjugate
to xsy, for some separating vertex s. As above, up to conjugating w we can assume
that w commensurates xsy, so there are non-trivial integers m,n P Z ´ t0u such
that wsmw´1 “ sn. By looking at the map ρ : AΓ Ñ Z sending every generator
to 1 we see that m “ n, so exactly as above we get that w is a root of sn, and in
particular acts elliptically on T , as required. □

Finally, AutpAΓq is acylindrically hyperbolic since the AutpAΓq-action on Tc
satisfies the requirements of [GH21, Proposition 3.8]:

‚ AutpAΓq is not virtually cyclic as it contains AΓ (here we are again using
that AΓ has no centre);

‚ The AΓ-action on Tc is acylindrical and minimal, hence orbits are un-
bounded as so is Tc. Thus the action is non-elementary by [Osi16, Theorem
1.1];

‚ w is WPD, as it is a loxodromic element in an acylindrical action. □

5. Isomorphism invariance of big chunks

Using the JSJ decompositions we constructed, in this final Section we prove that,
if two Artin groups are isomorphic, then any isomorphism must preserve the iso-
morphism type of big chunks. In fact, we show that every isomorphism preserves
the conjugacy class of any big chunk that is not a toral leaf.

We start with a lemma about dihedral Artin groups:

Lemma 5.1. Let xa, b | pabqm “ pbaqmy be a dihedral Artin group with label 2m.
If x P xa, zaby is a primitive element admitting an n-th root w P xa, by, then n ď m.

Proof. Consider the presentation of the dihedral as the Baumslag-Solitar group
xa, r | ra, rms “ 1y – Z˚mZ, where r “ ab. In the Bass-Serre tree of this HNN
extension, xa, zaby “ xa, rmy is the setwise stabiliser of the axis A of a. If w acts
loxodromically then its axis, which is also the axis of x “ wn P xa, rmy, must be
fixed setwise by a, as a consequence of Lemma 1.2, so it must coincide with A. In
this case w fixes A setwise, so w P xa, rmy against the assumption that w was a
non-trivial root. If instead w is elliptic then so is x, and the only elliptic elements in
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xa, rmy belong to xrmy (this follows from Lemma 1.3). Since x is primitive, we must
have that x “ r˘m, so w has order n in the central quotient xa, by{xrmy – Z˚Z{mZ.
It now suffices to notice that torsion elements in the latter have order at mostm. □

From now on, all defining graphs are finite, connected and on at least three
vertices, as in Notation 3.4. We now introduce another cyclic splitting of an Artin
group, which corresponds to the maximal visual splitting over separating vertices:

Definition 5.2. Let JpΓq be the splitting obtained from JpΓq by collapsing to a
point every edge that either has a red vertex as an endpoint, or is a loop. See
Figure 4 for an example of how to obtain JpΓq from JpΓq.

Figure 4. JpΓq has one white vertex for every separating vertex
of Γ, and one black vertex for every big chunk. Now all vertices of
Γ act elliptically, including the tips of even leaves.

Lemma 5.3. Let H,V be two standard big chunk parabolics of AΓ. If H ď kV k´1

for some k P AΓ, then H “ V and k P H.

Proof. In the Bass-Serre tree of JpΓq, the non-cyclic subgroup H has a unique
fixed point, which is the coset H; similarly, kV k´1 only fixes kV . However kV k´1

contains H, so kV k´1 ď StabAΓ
pHq “ H. Hence H “ kV k´1, and therefore their

fixed cosets H and kV coincide. In turn this means that k P V , so H “ V . □

The exact same proof, with JpΓq replacing JpΓq, yields the following:

Lemma 5.4. Let H,V be two non-cyclic vertex groups of JpΓq. If H ď kV k´1 for
some k P AΓ, then H “ V and k P H.

We next notice that, since two JSJ decomposition have the same elliptic subgroups,
then any isomorphism must preserve non-cyclic vertex groups:

Proposition 5.5. Let φ : AΓ Ñ AΓ1 be an isomorphism. Suppose that H ď AΓ is
a non-cyclic black vertex group in JpΓq. Then φpHq is conjugate to a black vertex
group of JpΓ1q.
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Proof. By Theorem 3.9, φpHq must act elliptically on JpΓ1q; thus there exists a
vertex group V of JpΓ1q and some h P AΓ1 such that φpHq ď hV h´1. Since H is
non-cyclic by assumption, V itself must be a non-cyclic black vertex group of JpΓ1q.
Repeating this argument with V and the inverse isomorphism φ´1, we get

(1) H “ φ´1pφpHqq ď φ´1phqφ´1pV qφ´1phq´1 ď k rHk´1,

for some k P AΓ and some non-cyclic black vertex group rH of JpΓq. By Lemma 5.4
all inequalities in Equation (1) are indeed equalities, so we must have had that
φpHq “ hV h´1. □

For the next Theorem, given a finite labelled graph Γ, let BCpΓq be the set of big
chunks of Γ.

Theorem 5.6 (Big chunks are isomorphism invariants). Let Γ and Γ1 be finite,
connected, labelled simplicial graphs, and let φ : AΓ Ñ AΓ1 be an isomorphism.
Then there exists a bijection φ# : BCpΓq Ñ BCpΓ1q such that, for every Λ P BCpΓq:

(1) AΛ – Aφ#pΛq.
(2) If Λ is not a toral leaf, then Aφ#pΛq is a conjugate of φpAΛq.
(3) If Λ is an even leaf, then so is φ#pΛq.

Moreover, if φ maps standard generators of Γ to conjugates of standard generators
of Γ1, then we can arrange that Aφ#pΛq is a conjugate of φpAΛq for every Λ P BCpΓq.

Proof. By e.g. [Vas22, Corollary B], if Γ has at most two vertices then Γ and Γ1

are isomorphic as labelled graphs, so the result is trivial. Then assume that both
Γ and Γ1 have at least three vertices, so that we are in the setting of Notation 3.4
and we can use the JSJ decompositions from Definition 3.7.

We shall progressively construct φ# on increasing subsets of BCpΓq, while check-
ing at every step that conditions (2) and (3) are satisfied, and that the map is
injective. Then the final map φ# will be injective as well, and satisfy the condi-
tions. As a consequence, φ# will also be bijective, as the same procedure will also
produce an injection pφ´1q# in the opposite direction.

Let Λ P BCpΓq, and let H be the corresponding black vertex group in JpΓq. Suppose
first that Λ is neither an even leaf nor an edge with label 2, and let BC`

pΓq be the
collection of such big chunks. By construction, H “ AΛ, which is not isomorphic
to either Z or Z2. By Proposition 5.5, φpHq is conjugate to a black vertex group
of JpΓ1q, which must be of the form AΛ1 for some Λ1 P BC`

pΓ1q as φpHq is also
not isomorphic to either Z or Z2. Thus we can define φ# on BC`

pΓq by setting
φ#pΛq “ Λ1. This map is injective because if Λ,∆ P BC`

pΓq then AΛ and A∆ are
not conjugate by Lemma 5.3, so they map to non-conjugate vertex groups.

Assume next that Λ “ ta, bu is an edge of label 2 which is not a leaf, so that
H “ AΛ – Z2. Again, Proposition 5.5 provides some black vertex group V – Z2

of JpΓ1q such that φpHq is conjugate to V . Suppose by contradiction that V “

xc, zcdy for some braided leaf tc, du with label 2m. Then zcd “ pcdqm, and since
the isomorphism φ maps H to V there would be a primitive element x P H and
some element r P AΓ such that rm “ x. Now let ρ : AΓ Ñ H be the retraction
from Remark 3.6, and notice that the element ρprq P H satisfies ρprqm “ ρpxq “ x,
against the assumption that x was primitive in H.

By exclusion, we must have that V “ AΛ1 for some edge of label 2 which is
not a leaf, so we can extend φ# by setting φ#pΛq “ Λ1. Again by Lemma 5.3,



18 O. JONES, G. MANGIONI, AND G. SARTORI

two different edges with label 2 which are not leaves must support non-conjugate
parabolics, so the extension of φ# is again injective.

Now let Λ “ ta, bu be a braided even leaf with label 2m and tip b, so that H “

xa, zaby. By the above argument applied to the inverse of φ, we see that φpHq “

kV k´1, where k P A and V “ xc, zcdy for some braided even leaf Λ1 “ tc, du with
label 2n and tip d.

We first show thatm “ n. Suppose by contradiction that this is not the case, and
up to replacing φ by its inverse we can assume thatm ă n. Since φ conjugates H to
V , to get a contradiction it is enough to show that a primitive element x P xa, zaby

cannot admit an n-th root y P AΓ. Let π : AΓ Ñ xa, by be the retraction from
Remark 3.6. Then πpyq P xa, by is an n-th root of x, which by Lemma 5.1 means
that n ď m, a contradiction.

We now claim that φpxa, byq ď kxc, dyk´1. If this is true, then the same argument
applied to φ´1 will give that φ´1pxc, dyq is conjugated inside xa, by, so

xa, by “ φ´1pφpxa, byqq ď φ´1pkxc, dykq ď hxa, byh´1,

for some h P A. Lemma 5.3 will then imply that the above containments are indeed
equalities, so that φpxa, byq “ kxc, dyk´1. We will therefore set φ#pΛq “ Λ1, and
again invoke Lemma 5.3 to get that the extension of φ# is injective.

To see that φpxa, byq ď kxc, dyk´1, let ψ be the composition of φ and the con-
jugation by k´1, so that we have to show that ψpxa, byq ď xc, dy. In turn, it is
enough to prove that ψprq ď xc, dy where r “ ab. Since rm “ zab, the element
x – ψprqm is primitive inside xc, zcdy; in particular, ψprq is elliptic and fixes some
coset gW , where g P AΓ1 and W is a vertex group of JpΓ1q. Let T be the sub-tree
of JpΓ1q corresponding to the xc, dy-orbits of the edge between the black vertex
xc, zcdy and the red vertex xcdy. If gW P T we are done, because then both g and
W belong to xc, dy and so ψprq P gWg´1 ď xc, dy. Otherwise, x fixes the geodesic
from gW to xc, zcdy, and on this geodesic let e be the last edge not contained in
T . By how JpΓ1q is constructed, we must have that e “ hxcy, where h lies in some
xc, dy-translate of xc, zcdy, and in particular in xc, dy. Then x P hxcyh´1 X xc, zcdy.
Since no power of hch´1 is central in xc, dy, the image x of x in the central quotient
xc, dy{xzcdy – Z ˚ Z{mZ is non-trivial, and lies in the intersection between xcy and

xhch
´1

y. Since xcy generates the Z-factor in the free product, which is malnormal,
we have that h P xcy, so h P xc, zcdy and therefore hch´1 “ c. In turn, x P xcy
is primitive, so x “ c˘1; however, sending every standard generator to 1 defines a
map AΓ1 Ñ Z, which maps ψprq to an m-th root of ˘1, a contradiction.

We are left to define φ# on toral leaves of Γ, whose number corresponds to the
rank of the fundamental group of the graph underlying JpΓq (this rank is known as
the Betti number of JpΓq). By a combination of [For01, Theorem 1.1] and [GL17,
Section 4], the two decompositions JpΓq and JpΓ1q have the same Betti number (in
fact, they belong to the same deformation space). Thus we can fix any bijection
ψ between the set of toral leaves of Γ and Γ1, and for every such leaf Λ we set
φ#pΛq “ ψpΛq. This completes the construction of φ#, which is injective as it was
injective at every step.

In the setting of the “moreover” part of the statement we can modify the def-
inition of φ# on toral leaves. Let ta, bu be a toral leaf with tip b. Since JpΓq

and JpΓ1q have the same elliptic subgroups, φpbq must act loxodromically on JpΓ1q,
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so it must be conjugate to the tip d of some even leaf tc, du because all other
vertices of Γ1 act elliptically. Furthermore, such leaf must be toral, because φ
preserves even braided leaves as we argued above. Hence let k P A be such that
φpbq “ kdk´1. By looking at the action of AΓ on the Bass-Serre tree of the vi-
sual splitting AΓ – AΓ´tau ˚Aa

Ata,bu one can see that CAΓ
pbq “ xa, by: if g P AΓ

centralises b, then it stabilises the minset of b, which consists of the single vertex
xa, by. Analogously, CAΓ1 pdq “ xc, dy. It then follows that

φpxa, byq “ φpCAΓpbqq “ CAΓ1 pφpbqq “ kCAΓ1 pdqk´1 “ kxc, dyk´1;

thus we can define φ#pta, buq “ tc, du, and again injectivity follows from Lemma 5.3.
□
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